Caylent Accelerate™

AI Evaluation: A Framework for Testing AI Systems

Understand the Frameworks Behind Reliable and Responsible AI System Testing

Traditional software testing doesn’t work for AI. As AI becomes embedded in enterprise applications, organizations are realizing that legacy testing methods fall short. From non-deterministic outputs to AI agents, AI systems require a new playbook.

This whitepaper discusses a comprehensive framework to help you test AI systems effectively.

In this whitepaper, you'll learn about:

  • The unique testing challenges posed by ML models, generative systems, and AI agents.
  • Testing methods for generative content, AI planning, failure scenarios, and real-time production monitoring.
  • How to monitor performance, manage bias, and apply programmatic evaluation techniques.

Download Now:


Related Blog Posts

How AI is Revolutionizing Database Migration: From Year-long Projects to Quarterly Wins

AI-powered automation is transforming database migrations. Read expert insights on faster, safer, and more cost-effective modernization for enterprises.

Generative AI & LLMOps
Databases

Architecting GenAI at Scale: Lessons from Amazon S3 Vector Store and the Nuances of Hybrid Vector Storage

Explore how AWS S3 Vector Store is a major turning point in large-scale AI infrastructure and why a hybrid approach is essential for building scalable, cost-effective GenAI applications.

Generative AI & LLMOps

Understanding the GenAI Competency on AWS

Explore what an AWS GenAI Competency means, how it can help you evaluate potential partners, and what to look for as you navigate the GenAI landscape.

Generative AI & LLMOps