re:Invent 2024

Retail technology company improved retail promotion and recommendation engine with MLOps

Artificial Intelligence & MLOps
Data Modernization & Analytics

50%

Better Performance

280%

Growth in Offer Claims

Company

Upside is not just leveling the playing field, we're leveling up the playing field. With Upside, people earn cash back and businesses earn proven profit, so communities grow stronger. And every transaction through Upside benefits the world at large, offsetting carbon and food waste so that our communities thrive for years to come.

upside.com

Location

Washington, D.C.

Industry

Retail

Share

Upside Case Study

Upside’s new ML system has significantly increased the number of cash back promotions being generated in real time to all eligible users across the platform. The performance of Upside’s key recommendation engine has also been improved by 50%.

Upside is a North America-based retail technology company that helps people earn cash back on the things they need, and businesses earn proven profit on every transaction. Upside does this by partnering with over 50,000 restaurant, grocery and gas station locations nationwide. Upside powers these experiences through its app and API Partner Platform, which includes Uber driver, Lyft driver, GasBuddy, Instacart and Current Bank apps. All of this value goes directly back to its retailers, the consumers they serve, and towards important sustainability initiatives. 

Challenge

Upside was experiencing an unprecedented demand for its product in 2022 as the platform added more food-related merchant partners. This demand caused difficulties keeping up with issuing real-time and individualized consumer offers. The Upside team knew they needed to implement a Machine Learning Operations (MLOps) solution for platform scalability and more efficient and predictable ML training. Upside needed support developing and deploying infrastructure for the expansion and engaged Caylent for AWS tooling recommendations and to implement the new ML training engine, models and systems.

Effie Baram
Caylent helped us deliver the platform to seamlessly support our recommendation engine, training models faster and producing great conversion results from our promotions. They have been a significant contributor to our success, helping us scale our engine to more verticals and accelerate our growth. They have expert AWS engineers on their pods teams who work hand-in-hand with our teams to ensure seamless delivery and enablement.

Effie Baram

Sr. Director of Platform Engineering

Solution

Caylent performed an initial assessment to understand the customers business goals, technology roadmap and operational requirements and worked backwards to identify core AWS ML services to build upon. Caylent then designed, migrated and tested Upside’s data landscape across multiple Upside environments to train and implement a solution leveraging managed AWS services to reduce the ongoing operational burden for Upside.

The new data landscape solution included core infrastructure, data pipelines, data analysis and engineering tools, data scientist development environments, model registries, feature stores, an ML metadata repository, ML pipelines (history tracking, model version tracking), model serving infrastructure, and model monitoring. By leveraging a purpose-built Amazon DynamoDB-powered ML feature store, Upside can serve inferences to their mobile app customers with sub-100 millisecond round trips.

In addition, Caylent automated supporting infrastructure for the data landscape by implementing monitoring, logging, and alerting for data flows as well as validating data. Caylent also implemented automated CI/CD for data and models that would automatically provision necessary guardrails. Caylent completed the implementation with zero outages and zero downtimes to the previous system.


Results

The new MLOps platform has improved the performance and recommendation engine for Upside’s existing cash back promotions and has resulted in additional functionality and net new offerings around new food verticals. Upside is now able to perform real-time machine learning releases, which have improved both the creation, performance and conversion of consumer cash back promotions.

Continued training of Upside’s implemented ML system has led to a significant increase in the number of cash back promotions being generated in real time to all eligible users across the platform. The performance of Upside’s key recommendation engine has also been improved by 50%.

Following a successful media advertising campaign, the platform has given Upside the ability to accommodate scale, with the robust and resilient architecture now able to support the onboarding of 270% more users and 280% more offer claims this year. Upside has also been able to implement its recommendation engine in two new industry verticals—grocery and restaurants—and announced new venture funding to further growth in new and existing verticals.

Company

Upside is not just leveling the playing field, we're leveling up the playing field. With Upside, people earn cash back and businesses earn proven profit, so communities grow stronger. And every transaction through Upside benefits the world at large, offsetting carbon and food waste so that our communities thrive for years to come.

upside.com

Location

Washington, D.C.

Industry

Retail

Share

Related Services

Caylent Services

Artificial Intelligence & MLOps

Apply artificial intelligence (AI) to your data to automate business processes and predict outcomes. Gain a competitive edge in your industry and make more informed decisions.

Caylent Services

Data Modernization & Analytics

From implementing data lakes and migrating off commercial databases to optimizing data flows between systems, turn your data into insights with AWS cloud native data services.

Related Case Studies

Venminder Logo

Venminder

Risk Assessment Company Unlocks 70% More Time for Compliance Analysis by Automating Data Retrieval with Generative AI

Read more
Venminder Logo

Venminder

Risk Assessment Company Cuts Database Costs by 85% and Boosts Scalability with Amazon Aurora Serverless

Read more